高中二项式定理公式
二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664-1665年提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
公式为
系数性质
⑴和首末两端等距离的系数相等;
⑵当二项式指数n是奇数时,中间两项最大且相等;
⑶当二项式指数n是偶数时,中间一项最大;
⑷二项式展开式中奇数项和偶数项总和相同,都是2^(n-1);
⑸二项式展开式中所有系数总和是2^n。
二项式定理的系数Cnk怎么求
Cnk = [ n (n-1)(n-2)....(n-k 1) ] / k的阶乘;
例如:C5 2 =(5×4 )÷ ( 2×1)=10。
对于任意一个n次多项式,总可以只借助最高次项和(n-1)次项,根据二项式定理,凑出完全n次方项,其结果除了完全n次方项,后面既可以有常数项,也可以有一次项、二次项、三次项等,直到(n-2)次项。
特别地,对于三次多项式,配立方,其结果除了完全立方项,后面既可以有常数项,也可以有一次项。
由于二次以上的多项式,在配n次方之后,并不能总保证在完全n次方项之后仅有常数项。于是,对于二次以上的一元整式方程,无法简单地像一元二次方程那样,只需配出关于x的完全平方式,然后将后面仅剩的常数项移到等号另一侧,再开平方,就可以推出通用的求根公式。
对于求解二次以上的一元整式方程,往往需要大量的巧妙的变换,无论是求解过程,还是求根公式,其复杂程度都要比一次、二次方程高出很多。
用数学归纳法证明二项式定理
证明:当n=1时,左边=(a b)1=a b
右边=C01a C11b=a b;左边=右边
假设当n=k时,等式成立,即(a b)n=C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn成立;
则当n=k 1时, (a b)(n 1)=(a b)n*(a b)=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*(a b)
=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*a+[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*b
=[C0na(n 1)+C1n anb十…十Crn a(n-r 1)br十…十Cnn abn] [C0nanb+C1n a(n-1)b2十…十Crn a(n-r)b(r 1)十…十Cnn b(n 1)]
=C0na(n 1)+(C0n C1n)anb十…十(C(r-1)n Crn) a(n-r 1)br十…十(C(n-1)n Cnn)abn Cnn b(n 1)]
=C0(n 1)a(n 1) C1(n 1)anb C2(n 1)a(n-1)b2 …+Cr(n 1) a(n-r 1)br … C(n 1)(n 1) b(n 1)
∴当n=k 1时,等式也成立;
所以对于任意正整数,等式都成立。
TAG:
热门标签: 南京市(1) 温僖贵妃(2) 小吃(2) 汉字(5) 湘西(2)
注
部分信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将立即处理,举报邮箱:1356571586@qq.com
随机关键词:

资源联系人
-
上一篇
宵禁是什么意思啊
戒严期间夜间禁止人们外出或通行。“宵”是夜晚,“禁”是禁止。宵禁就是禁止夜间的活动。宵禁是基于公共安全秩序为由,由立法机构、政府或军方决定并由军警具体负责实施的一种在戒严期间禁止夜间行动的宪法行为。一般在战争状态、全国紧急状态或者戒严时期使用。在宵禁期间,宪法和法律规定的一部分或全部的公民的权利和自由将会受限或者中止。实施形式在实施宵禁期间,在实行宵禁地区的街道或者其他公共场所通行,必须持有本人身
-
上一篇
高级警长是什么级别?
高级警长是什么级别高级警长是副处级级别,其任职条件是:1、具有中华人民共和国国籍;2、18至35周岁;3、拥护中华人民共和国宪法;4、具有良好的品行;5、具有正常履行职责的身体条件;6、具有符合职位要求的工作能力;7、具有大专以上文化程度。警长的工作内容1、负责警区内民警的教育管理工作;2、指挥、安排警区内民警的治安巡逻和案件的办理工作;3、负责警区内暂住人口和流动人口的管理工作;4、负责建立警区